- Register


Home >Blogs> >Andy Pye
Andy Pye

1/5     (1 to 10 of 42)

Overcoming the Iceberg Effect 15/04/2019

The case for investing in robotic process automation (RPA) seems incredibly strong. In practically every business, employees spend many hours per week undertaking repetitive manual tasks with data, such as copying and pasting, and capturing and rekeying. In the manufacturing environment, this is often even more prevalent.

We say to ourselves "It’s obvious that if we can automate those processes, we’ll save thousands of hours, and we’ll be able to focus on much more interesting, important and profitable work.”

But there’s a catch. Among companies that have already started adopting RPA, very few are currently achieving the full benefits that a well-rounded RPA strategy can deliver. The most common complaint is that the RPA project has stalled and they don’t know how to move forward.

There are many reasons why RPA projects can go off the rails, but in most cases, there is a common pattern. RPA immediately resonates with most decision-makers because almost all businesses have a few processes that are so laborious and inefficient that they are already on senior management’s radar. These are often the processes that are easiest to automate, because it’s obvious what needs to be done to streamline them.

The RPA initiative therefore starts strongly — the company sets up an RPA Centre of Excellence (CoE) that has a clear idea of the first few problems it needs to solve, and the RPA team usually delivers these quick wins within the first few weeks or months.

However, as the afterglow of that success fades away, a difficult question arises. Now that the initial challenges have been solved, what should the CoE team tackle next? The lack of an innovation pipeline of automation opportunities makes it difficult to maintain much-needed momentum.

This is the Iceberg Effect. Like an iceberg which only has about 10% of its mass visible above the waterline, RPA has only a small percentage of potential use cases that are glaringly obvious to everyone in the business. The remainder glide silently beneath the surface, grinding down productivity and sinking morale without ever making enough noise to alarm the higher levels of the organisation.

The smoothest RPA journey allows businesses to start small, learn quickly and scale seamlessly. This helps to reduce the overall project risk and avoids the high upfront costs which can make achieving a positive ROI that much harder. Successful RPA initiatives look to the people doing the work throughout the business (known as "citizen developers") to kickstart the discovery and development of RPA opportunities.

To extend the iceberg metaphor, the CoE is like a ship’s engine-room: it does most of the hard work that powers an enterprise-wide RPA initiative, but it doesn’t necessarily have as clear a view as the people up on deck.

If these end-users are given help to automate the tasks that they find most tedious or time-consuming, it becomes much easier to identify a wealth of RPA opportunities that are normally hidden from view — even though they may seem obvious to the people trying to steer the business out of the iceberg’s path!
The CoE team can then start to join the dots — integrating individual tasks into larger, more sophisticated and robust RPA strategies and delivering greater business value. Successful RPA places as much focus on empowering the citizen developers as providing advanced software for the RPA experts in the CoE.

One business consulting company and provider of RPA which applies this philosophy is Softomotive. Its People1st Strategy puts people before robots, placing the power in the hands of the end user to help them discover and implement process automations quickly and safely, without having to write a single line of code. Softomotive uses the WinAutomation desktop automation tool a powerful Windows-based platform for building software robots; allied to ProcessRobot, an enterprise RPA platform, including security and controls, with links to best-of-breed AI technologies.

Be the first to have your say.

You need to or  to add comments.

A symbol of hope 19/02/2019

The UK is ambitious to increase its trade with the rapidly emerging economies, and is prepared to prioritise it over maintaining trading levels with its established trading partners.

One of the four Industrial Strategy Grand Challenges outlined by the government and intended to put the UK at the forefront of the industries of the future concerns AI and data. Two new research programmes announced by UK Research and Innovation (UKRI) are looking to transform engineering, urban planning and healthcare. The programmes are supported with £48 million of funding delivered through the Strategic Priorities Fund.

Minister for Digital, Margot James, said: “We are determined to make sure the UK remains at the forefront of cutting-edge technologies and through our modern Industrial Strategy we are working with industry, business and academia to develop innovation that will change people’s lives for the better."

UKRI is delivering funding through the Industrial Strategy Challenge Fund to use AI and data in pathology and imaging to revolutionise early diagnosis of diseases and conditions and their treatment. And digital twins – digital replicas of physical systems assisted by Artificial Intelligence (AI) – have the potential to be used to view aircraft engines in-flight to identify safety risks, model wind turbine design for improved energy generation and allow customers to model new fashion on a virtual twin of themselves.

Seemingly, a world away, Kigali in Rwanda is now the ninth safest capital city on the planet. In 1994, this African nation suffered one of the worst genocides in history. Over 100 days, its government slaughtered one-tenth of the country’s population and displaced more than 2 million people. But even before, Rwanda was a country in crisis; the ongoing civil war had destroyed its already fragile economy, severely impoverished its citizens, and made it impossible to attract external investment.

Fast-forward to 2017, and this nation of 12 million people is undergoing a complete transformation. When President Kagame emerged as Rwanda’s de facto leader, he set out his ambition to transform the country from one of Africa’s poorest nations into a leading knowledge economy by 2020. Nobody anticipated the extraordinary growth that would follow. On its path to becoming a middle-income country, Rwanda has sought advice from China, Singapore, and Thailand.

The key has been knowledge sharing. Through investing in IT infrastructure and forward-looking skills, Kigali, currently home to 1.22 million people, a population set to triple by 2040, is quickly becoming a leader in the knowledge-based sharing economy.

The rest of Africa looks to Rwanda as a land of opportunity and a symbol of hope. It is leapfrogging developed countries in fundamental areas such as smart city infrastructure, vocational training, and strategic foreign investment. 4G/LTE networks cover more than 95% of the country, and there is a national roll-out of fibre-optic broadband. As its citizens and businesses get connected, Kigali is becoming an African hub for multinational tech companies, including Google, Facebook, and Amazon.

As a result of providing businesses with the necessary infrastructure to develop and deploy their own IoT applications, investments in IoT infrastructure across Africa and the Middle East are projected to reach $7.8 billion by the end of 2017, money which goes a lot further when the projects are spearheaded by local initiatives. This technical infrastructure is crucial to Kigali’s aims of empowering and inspiring citizens to innovate, creating fresh opportunities - especially for young people - and sharing knowledge with neighbouring African nations.

What strategies should the UK adopt to keep pace with Rwanda?

Be the first to have your say.

You need to or  to add comments.

Robots trapped between a rock & a hard place 11/12/2018

The dilemma posed by robotics is highlighted by two reports published this month. A report in the Luxembourg Times notes that an increased use of robots is probably behind a decline in total employment rates in 11 emerging Eastern European countries. Conversely, the UK, the lack of investment is making industries uncompetitive.

Robots will also help fill job shortages in a region, like the UK, with an ageing population where companies complain that they can't find enough skilled people to fill open positions. According to the EBRD, while some types of work will become obsolete, other jobs in more productive sectors will emerge.

With the use of industrial robots rising globally, the average worker in Slovakia - the world's top car producer per capita - faces a 62% median probability that his or her job will be automated "in the near future," according to the London-based European Bank for Reconstruction and Development (EBRD).

Workers in Lithuania are only slightly less at risk, and the chance hovers at around 50-50 for employees in Slovenia, Poland, the Czech Republic and Estonia. Robots will be most used in textiles, agriculture and manufacturing.

Foreign-direct investment is a main driver. Slovakia and Slovenia use about 93 robots for every 10,000 manufacturing workers, the highest ratios in the EBRD region and comparable to the level seen in Brazil, China and South Africa..

Technological innovations are quickly shifting the balance between activities performed by humans and tasks performed by machines, the report continues. In manufacturing, the percentage of jobs that are at risk of automation may be particularly high.

In contrast, in the UK, firms seem to be taking the easier and ‘safer’ option by investing in labour rather than new technologies. "It’s understandable that firms with smaller budgets are hesitant to scrap their existing machinery in favour of newer technologies, but it is equally ineffective to simply hire new staff without investing in the right technologies and connected systems for them to operate," says Jason Chester, director of Channel Programs for InfinityQS, a specialist in data-driven manufacturing. "Advancements in the IIoT and cloud-based data analytics now offer manufacturers the ability to operate far more efficiently, enabling them to accurately monitor and adjust their operations in real-time so they can remain competitive and adapt to an increasingly unstable global market."

Chester says that economic uncertainty fuelled by Brexit, in conjunction with the gradual decline of high-street retailers and a contracting construction sector is having a negative effect on supply-chain demand and restricting further growth. As a result, UK manufacturing industry appears to be in a state of constant flux.

“Unfortunately, the lack of understanding surrounding technological innovations, including robotics, industrial Internet of Things (IIoT), automation, manufacturing intelligence, cloud computing, Big Data, and artificial intelligence, has meant manufacturers are hesitant to go digital," Chester adds. "The manufacturing sector is the backbone of the economy, currently employing approximately 2.6 million people and accounting for 44% of total exports. Firms that take the initiative to future-proof their manufacturing operations by prioritising investment in IIoT and intelligence solutions will be able to navigate their challenges to emerge as leaders in the fourth industrial revolution.”

Be the first to have your say.

You need to or  to add comments.

Maintec: dialogue the key to networking 09/10/2018

Automation, digitalisation, big data and connectivity are becoming increasingly important across today's modern maintenance practices, so it made sense for CDA's consulting editor, Andy Pye, to play a pivotal role in curating the Reliability Dialogue theatre at the forthcoming Maintec event. Here he reviews the aims of the theatre and reveals the objectives of the behind-closed-doors Round Table Discussion

Running alongside the impressive list of keynote and blue chip speakers in the Maintec Insights theatre is the Reliability Dialogue theatre, sponsored by Bosch Rexroth. The sessions in this theatre are short (25 minute) panel discussions involving three or four key participants, many of whom are show exhibitors, or speakers from Maintec Insights sessions running alongside. In this tight timeframe, each participant is allowed a brief presentation of around 3 to 5 minutes, with the remaining time dedicated to a Q&A session.

Questions will be taken from the floor, or previously submitted by readers of the supporting publications, including this one. Of course, discussions may continue unmoderated following the closure of the official session, or where exhibitors are involved, back at the company stand.

Questions will be taken from the floor, or previously submitted by readers of the supporting publications

To make the discussions ever more relevant, a limited number of visitors will be accepted, by prior arrangement, onto the Reliability Dialogue panels. Details of how to ask a question, or to apply to be a participant, are given in the box at the end of the article.

The Reliability Dialogue Sessions

Tuesday 6 November:

Rail and Transport, 11.15 to 11.40

We are all accustomed to trains being replaced by buses due to Planned Engineering Works. How is disruption to services minimised, as the rail companies fight to maintain vehicles and tracks on which they run?

Track maintenance machines have become increasingly automated, but certain areas still require the strength and attention of trained operators. The Internet of Trains The real IoT – the Internet of Trains enables metros, passenger and freight services to use sensors, Machine2Machine learning, the Big Data analytics, cloud computing and other tech to gather and analyse information from a wide variety of sources and data streams. This benefits not just IT, but also engineering, maintenance, signalling, communications, ticketing and on-board experience.

Asset Maintenance Strategies, 13.05 to 13.30

Maintaining machines and equipment at optimal performance levels can be a constant battle. Asset Maintenance Management describes the continuous process improvement strategies for improving the availability, safety, reliability and longevity of physical assets (systems, facilities, equipment and processes).

With a plethora of different strategies to address up keep of critical assets, it can be daunting to determine which is most cost-effective and successful in the long run. Are you in reactive mode? Should you follow a pre-determined schedule? Should you wait until there is a clear deviation? Does preventive maintenance do more harm than good?

From Condition Monitoring to Predictive Maintenance, 14.05 to 14.30

Regular maintenance is good - but it can be costly if parts are replaced or repaired at the wrong time. Particularly in just-in-time production, outages and production downtimes can have a devastating impact, which quickly affects many other parts of the value chain and ultimately company performance and its asset. Predictive maintenance uses an array of sensors and intelligent components to expand options for detection and visualisation of operational data. All data is available for quick evaluation on site and is used to detect wear and irregularities during operation long before damage or downtime occur.

Energy Utilities, 15.05 to 15.30

What systems are available for energy utilities to minimise the risk of failure and maximise equipment lifetimes in the most cost-effective way, increasing reliability? Such approaches should include elements of predictive maintenance and preventive maintenance to prioritise maintenance where it will be most effective. It should also combine asset condition data (such as oil analysis, device testing, thermography, and visual inspection) with real-time operational data.

Wednesday 7th November:

The Digital Factory, 11.15 to 11.40

A digital factory uses digital technology for modelling, communications and to operate the manufacturing process. This arrangement of technology allows managers to configure, model, simulate, assess and evaluate items, procedures and system before the factory is constructed. Downtime should be minimised because predictive maintenance procedures, based on historical and real-time data for each piece of equipment, automatically address incipient problems before a breakdown.

Gathering and Managing Data, 13.05 to 13.30

This session looks at typical Industry 4.0 devices used to gather data from processes. What type of data should be gathered? How should Big Data be handled, and where should it be stored - locally, in the Cloud, or in the "Fog"?

Although the IoT is currently driven by connecting field devices to the cloud, there are limitations. Most IoT implementations are about connecting to - and doing all of the processing in - the cloud. Although this can work for the consumer IoT, for Industrial IoT systems not everything can take place in the cloud.

The other major issue confronted with cloud computing is security and privacy. Since the cloud systems have been located with the Internet, user requests, data transmission and system responses need to traverse many intermediate networks depending on the distance between the users and systems. When customer data is in a public cloud, there is a risk of them being compromised of their integrity and confidentiality.

Fog computing refers to extending cloud computing to the edge of the network of the enterprise. Also known as Edge Computing (or Fogging), it facilitates the operation of compute, storage and networking services between end devices and cloud computing data centres.

Fog computing refers to extending cloud computing to the edge of the network of the enterprise

By handling the services that make up the Internet of Things (IoT) at the network edge, data can in many cases be processed more efficiently than if it needed to be sent to the cloud for processing.

Remote Measurement, 14.05 to 14.30

The use of Industry 4.0 compliant devices means that remote facilities, such as substations and water supply facilities, no longer have to be physically visited to monitor their performance. Remote Measurement products are used by companies and authorities that need to measure and monitor aquatic environments, machinery and equipment, and weather conditions.

Remote Measurement systems gather measurement data in locations where infrastructure is lacking. This is possible because measurement data is sent by satellite or mobile telephony networks from devices on site, many with their own power supply.

We look at examples in use today and consider how their use might be extended.

Maintenance with Robots, 15.05 to 15.30

Robots are useful in providing a means of inspection of locations which are hazardous for humans to inspect, or difficult for them to access. Robotics is playing an increasing part in maintenance of such installations as nuclear facilities, and wind turbines, while drones can fly above cranes and look down with sophisticated visual and thermal cameras to see what might be going strong. When and where is the investment justified?

Round Table Discussion

On the evening of the first day at Maintec, and shortly after the close of the exhibition, we will be holding a behind-closed-doors Round Table Discussion involving invited key senior maintenance specialists from users and suppliers in the manufacturing and process sectors. The session chairman will be Andy Pye, Senior Editorial Consultant to Maintec.

The discussion will consider the effect on OEE of predictive maintenance,

The key theme to be explored during the session will be Overall Equipment Effectiveness (OEE). The discussion will consider the effect on OEE of predictive maintenance, including the advent of Industry 4.0 devices, and in particular, how the concepts relate to the SME community in the UK.

The "Six Big Losses" which affect OEE are:
- Planned Downtime
- Minor Stops
- Production Rejects
- Breakdowns
- Speed Loss
- Rejects on Start up

The session, which will last about 90 minutes, will be audio recorded, transcribed, edited and published subsequently in the relevant Western Business Publishing titles.

The sponsor for this session is Festo, who will provide a panel member. Also providing a panel member will be Bosch Rexroth, sponsors of the Reliability Dialogue and Maintec Insights theatres. Other confirmed panel members to date include representatives of exhibiting companies SSG Insight, EMS Cognito and SPM Instruments. We are in the process of adding further panel members at this very moment!

At a similar event two years, the slow uptake of the SME community of Industry 4.0 technologies was highlighted: at the time, Chris Greenough, Commercial Director of Salop Engineering, a manufacturer of pressings and assemblies based in Shrewsbury, and President of Shropshire Chamber of Commerce, said: “Digitisation has been pushed through the large OEMs and First Tier companies and that hasn’t filtered down to the SMEs. Yet, this is where the biggest potential improvement is.”

Adam Payne Managing Director of TCM UK, which specialises in lean manufacturing strategy and 3D printing, added: “It is recognised – as Chris says, it is easy to roll it out to the OEMs, they have the investment and teams. But it is the manufacturing SMEs that can make the biggest difference – they can get so much out of it - energy savings, remote monitoring. Therefore, we need to see a proper manufacturing policy, which involves everyone, so we all get to the same end goal.”

Justin Leonard, Director at Igus, the manufacturer of cables, cable assemblies and plastic bearings, caught the mood of the discussion at the time, saying: “With SMEs, we need to approach Industry 4.0 in small steps. For example, we can introduce smart products that can indicate how long they are going to last (say, warning 50%, 75% of the way through the lifetime). Users of these products don’t have a lights-out factory, but they are already using Industry 4.0 technology, they just don’t realise it.”

How have things changed since? Unfortunately, while 80% of UK manufacturers say industry 4.0 will be a reality by 2025, only 11% expect to be ready to capitalise on it, according to information released by the recently launched Green Technology Task Force (London, September 2018).

Smart technology can be used to reduce energy consumption, eliminate waste and decrease carbon emissions

Steve Brambley, chief executive of GAMBICA, the Trade Association for Instrumentation, Control, Automation and Laboratory Technology, and a Tech Task Force member, said: “Smart technology can be used to reduce energy consumption, eliminate waste and decrease carbon emissions. As well as being environmental imperatives, these are important goals for the UK’s long-term competitiveness.”

In launching the scheme, Claire Perry, Minister of State at the Department for Business, Energy and Industrial Strategy, emphasised that the UK has a long history of brilliant ideas, but is less successful in holding onto the intellectual property (IP).

How to take part in Reliability Dialogue

Submit a question: If you have a question you would like to be debated at one of the Reliability Dialogue sessions, please email it to Andy Pye at apye@western-bp.co.uk. It would be best to ask the question in person – and be there to hear the answer – so please indicate if you intend to be present at the session. We will contact you if we intend to use your question.

Why not take part? Or go a stage further! If you are planning to attend Maintec and have a maintenance story to share with other visitors during the Reliability Dialogue, you could be accepted onto one of our panels. Just contact Andy on apye@western-bp.co.uk. In this case, if accepted, we will ask you for a guarantee of attendance, but will pay reasonable travelling expenses in return.

Be the first to have your say.

You need to or  to add comments.

Green technology: what the Government giveth, so Brexit taketh away 08/10/2018

Launched on the same day last month (12th September) were two industrial initiatives, the Green Task Force Alliance and the EURIS report on the effects of a no-deal Brexit.

Examples of strengths in the UK and favourites of include smart grids, energy storage, offshore wind, electric vehicles and solar PV, amongst others.

The Green Alliance Task Force focuses on how smart technologies might boost the resource efficiency of UK businesses. In recognition of the economic divide highlighted by the result of the Brexit referendum, it is also hoped to springboard the economic prospects of the traditional manufacturing regions.

Steve Brambley, chief executive of GAMBICA, the Trade Association for Instrumentation, Control, Automation and Laboratory Technology (Tech Task Force member), said: “Smart technology can be used to reduce energy consumption, eliminate waste and decrease carbon emissions. As well as being environmental imperatives, these are important goals for the UK’s long-term competitiveness.”

This new Tech Task Force is bringing together businesses committed to smart clean growth to work out where policy can accelerate the adoption of technologies that could help businesses across the UK grow their profits by reducing their environmental impact. 

The EURIS report

But the manufacture of low carbon energy products is also an area where post-Brexit trade barriers could slow down the UK’s ability to capitalise.

EURIS, an advisory body of 13 trade organisations representing industrial product suppliers covered by the Single Market, released the results of a survey conducted amongst its members by the UK Trade Policy Observatory of the University of Sussex. The vice-chair of EURIS is the aforementioned GAMBICA's Steve Brambley, while the Chair is Dr Howard Porter, CEO of BEAMA, which represents manufacturers of electrical infrastructure products and systems. EURIS collectively represents companies turning over £148 billion and employs 1.1 million people.

"Securing a competitive UK manufacturing industry post-Brexit" is a hard-hitting condemnation of the impact of a no-deal Brexit. Such an outcome, the report concludes, will cause severe damage to industry and must be avoided.

What has the EURIS report to say specifically on Low Carbon issues of the type being promoted by the Green Task Force Alliance?

Government support for renewables and cleantech has underpinned this growth by increasing deployment and allowing the establishment of cost-effective cross-border supply chains, whereby the UK imports components such as solar panels, wind turbines and energy storage systems. The EU accounts for around 64% of all low-carbon equipment imported by the UK. At the same time, the EU is also the UK’s primary market for low carbon equipment exports (55%), which includes growth industries like electric vehicles.

Export of electric vehicles

The EU currently accounts for a large proportion the UK’s export in electric and hybrid vehicles. It is currently unclear what tariffs the UK market may face on leaving the Customs Union, however, failure to secure a trade agreement could possibly see member states apply the Most Favoured Nation tariff of 10% on UK imports of electric and hybrid vehicles. This could cause car makers to shift their efforts to selling electric cars in other European countries, driven by EU member state commitments to stop the sale of new petrol or diesel cars within the next two decades.

Aside from trade concerns, the EURIS report adds, a failure to maintain energy system regulations, decarbonisation targets and environmental standards after Brexit will also impact the low carbon product manufacturing market. The UK has been an influential force in the design of the EU’s current energy policy, resulting in the development of a secure, and affordable low carbon energy system across Europe.

Be the first to have your say.

You need to or  to add comments.

EEF survey shows slow Industry 4.0 progress 16/08/2018

Manufacturers in the UK are boosting investment in fourth industrial revolution (Industry 4.0 or 4IR) technologies, according to a newly published survey by EEF. It provides new evidence that many companies have moved beyond the initial 'conception' phase and into the 'evolution' phase where they are seeing real benefits from their investments.

According to EEF, given that given productivity has flat-lined in the decade since the financial crisis, and that new digital technologies are rapidly transforming European manufacturing, investment in 4IR technologies is vital to achieving a step change in UK manufacturing productivity.

“While there has been some progress and more companies are both aware of 4IR and investing, it is clear that we are still some way off a majority engaged in adoption," says Chris Richards, Head of Business Environment Policy at EEF. “The reasons for this patchy uptake depend on where firms are on their 4IR journey, but they include a spectrum of challenges. Government and industry need to work together to ensure the UK benefits from the productivity benefits 4IR technologies can offer.”

The majority of manufacturers (57%) are yet to make investments and only one in four companies see the UK as being in a 4IR leadership position. Barriers stand in the way of additional investment and industry and government need to do more work together to overcome these as part of the industrial strategy. These include a lack of skills within business for implementation, which tops the list for 88% of companies. But for those currently doing nothing on 4IR, the biggest barrier is not understanding how technologies can help the business. Of those investing the most in 4IR, the skills issue is less important, as the biggest barrier is data compatibility between systems (42%).

According to the survey, almost two thirds of companies (64%) say they are familiar with the concept of 4IR, which compares to just 42% in 2016. The survey also shows that a move to a more advanced form of 4IR investment for companies results in significant benefits being expected or realised in terms of improved labour efficiency (35%), improved machine utilisation rates (34%) and increased production flexibility (32%).

According to EEF, policy makers can’t be timid, as a separate survey of the public shows only 26% say we shouldn’t adopt new technology if it means jobs will be lost. While there has been some positive progress in recent months in areas such as delivering the full fibre digital infrastructure that 4IR will depend on, progress is still desperately needed.

Be the first to have your say.

You need to or  to add comments.

SMEs urged to harness Industry 4.0 - or risk falling behind 20/06/2018

Small-scale manufacturers are in ‘critical danger’ of losing out to their competitors unless they adapt quickly and adopt Industry 4.0 into their strategies, warns Lucy Pamment, product manager at supply chain technology Access Group. The company has published a new free guide, Industry 4.0 User Manual for SMEs.

Just like manufacturers, the warehousing and logistics industry is now seeing the time and cost-saving benefits of warehouse management systems (WMS). Software like Access Delta WMS integrates with other platforms to ensure that goods will arrive with the customer on time. It can also help work more closely with distribution centres. Access Delta WMS integrates with standard courier services such as TNT, so customers can see exactly where their order is. As well as giving a real-time view of goods in and out, it ensures delivery documents are correctly signed-off and accessible via the system. Topically, this is particularly relevant for trading internationally and the driver needs to present customs documents on arrival.

According to Pamment, many of the discussions around Industry 4.0 are ‘unhelpful’ for SMEs, who have yet to get on board with the digital revolution. “For too long now, the focus has been on global companies, whose futuristic-looking ‘smart factories’ bear little resemblance to the traditional operations you see further down the supply chain,” he said. “The language is often too technical or academic, and the suggestion that factories will have to deploy, say, robots with artificial intelligence is extremely unhelpful."

Pamment says that many production managers are left thinking that the technology is too expensive with their limited resources, and this means they are in danger of missing out on valuable opportunities to work with the giants in aerospace, food, pharmaceuticals and other industries.

"In this new free guide, we want to show that the latest innovations, including supply chain software, are affordable, scalable and can be rolled out quickly. Using down-to-earth language, it’s important for production managers to see their factories won’t suddenly look like something from a sci-fi film, or that the systems are difficult to master – in fact, most require the same skills you’d use with Microsoft or Facebook," continues Pamment. “As we break down the barriers to entry, smaller manufacturers are now seeing the benefits of digital systems for reducing costs and driving efficiencies. All this is crucial in an increasingly complex supply chain, where the biggest companies demand full transparency for every component and raw material. How can a supplier demonstrate traceability and compliance if all their information is stored on paper or spreadsheets?”

With the need to prove GS1 Compliance, a standard now compulsory in the NHS, for example, Access Delta WMS makes it possible to apply GS1 regulations quickly, and provide a stronger audit and improve customer service. A drag-and-drop warehouse map means the logistics team can make instant decisions, while improved picking and stocking accuracy leads to faster turnaround times and an increase in shipping capacity.

Be the first to have your say.

You need to or  to add comments.

Could - or should - robots be taxed? 25/04/2018

As automation increasingly encroaches on traditional forms of employment, many governments around the world have been grappling with the consequences. The "left behinds" have been a strong influence in recent elections and the rise of populism.

The world's first robot tax was introduced last year in, of all places, South Korea. The tax was created amid fears that a rise in automation and robotics was threatening human workers and could lead to mass unemployment in the country.In fact, this so-called robot tax was not actually a tax at all. Calling it a tax was simply rhetoric delivered by its opponents. Essentially, it was just a revision of existing tax laws: the country limited tax incentives for investments in automation, lessening the existing tax breaks for automation.

But is this the way forward? At Drives and Controls, Toshiba Machine partner TM Robotics was displaying advanced machine vision systems for automating bin-picking. Managing Director Nigel Smith rightly argues that slowing down the machine economy would lead to a productivity disaster. Automation levels in the UK are low enough as it is, without a further factor slowing down investment. Green shoots of increased automation are just emerging, and this is particularly evident in the food and beverage industry.

Most manufacturers and those operating in the robotics sector would disagree with the idea of a tax on robots, the debate does raise questions of how we tax employment in Britain — and how technology could affect this. The obvious fear at Government level is that if we replace people with robots, we reduce national insurance contributions, lessening a Government’s ability to support its people.

But if automation creates new, different jobs, then perhaps none of this would be needed? The bottom line is that robots create jobs, they don’t take them away. . Humans and robots are actually good at different aspects of the work. This is supported by the UK Government’s recent Made Smarter review on digitalisation in industry. The review concludes that over the next ten years, automation could boost UK manufacturing by £455 billion, with a net gain of 175,000 jobs.

The key is to ensure that the jobs created by the wealth that automation brings are higher value jobs than the ones replaced. Above all, the wealth created by automation must not end up in the pockets of a small number of "mill-owners,” but must be distributed into the industrial sector and the community.

So taxing robots would be a tax on net job creation. Instead of implementing a tax on robots, we should arguably be providing tax breaks for companies investing in robotics.

Andy Pye Consulting Editor

Be the first to have your say.

You need to or  to add comments.

The limits to automation 07/03/2018

The robot revolution hasn't happened at the pace predicted two decades ago, but it is coming, and rapidly. Computer power, big data, improvement in sensors, vision technology and speech recognition are challenging the role of humans in many professions.

The current demand for robots is three times greater than 10 years ago. The range and type of robots is no longer limited to welding cars or lifting heavy loads. A Panasonic factory with the assistance of robots has been producing two million high-end TVs a month, with only 25 employees.

An added factor is manufacturers re-shoring. This is a reversal of the 20th-century policy of transferring operations to lower labour cost and tax-attractive countries. In the future, AI robots will make it attractive for corporations to return to their original base.

The surge in robot sales has seen the emergence of four major suppliers, two Japanese, Fanuc and Yaskawa, the Swiss/Swedish concern ABB and Germany's Kuka AG.

Recognising this, in 2015, China devised a plan to become the leader in several industry sectors, including medical, aerospace, energy, and robotics. The Robotics Industry Development Plan is a five-year plan to rapidly expand its industrial robotic sector. China wants to be able to manufacture at least 100,000 industrial robots per year by 2020 and for the majority of robotic orders in China to be fulfilled by indigenous manufacturers. To further the goal, electronics appliance company Midea purchased Kuka.

“China can manufacture simple robots, but nothing like the six-axis models of Japan, Germany, and the US,” says Zi Yang, a China analyst from the Jamestown Foundation in Washington, DC. “It’s hard to close the gap, mainly because of lack of innovativeness, weak intellectual property laws and government-led projects that focus on quantity over quality.”

Even today, much of the UK’s media coverage on the subject focuses on the threat that automation poses to jobs, as opposed to the productivity benefits. Studies suggest that automation could affect one in five jobs in the UK, but, that doesn’t necessarily mean the technology will replace human workers. The UK Government’s Made Smarter Review, finds that a greater uptake of industrial digitalisation technologies (IDTs) could represent as much as £455 billion growth for manufacturing in the next decade, creating 175,000 jobs and increasing productivity by 25%.

Automated equipment is capable of extremely complex and challenging tasks that humans cannot possibly achieve. However, there are still things that humans can do far better than robots can.

One way that humans triumph over robots is in their capability to make decisions. Additionally, because humans can think and act more flexibly, they are often better problem solvers. Moreover, many industries rely on creativity, something that would be missed in a company run entirely by robots.
Maybe one of the first decisions that the humans could make is to increase investment in robotics?

Be the first to have your say.

You need to or  to add comments.

Predictive maintenance pushes technology boundaries 31/01/2018

Few things can damage the financial stability of a manufacturing facility more than unexpected downtime. On average, manufacturers suffer with 30% or more downtime during their scheduled production time. However, there are ways to reduce the risk.

The automotive industry has long been at the forefront of applying new automation technologies, but the industry is also at the forefront of industrial network modernisation. Downtime can cost up to £17,000 per minute.

Traditionally, industrial maintenance has been done on a fixed schedule, replacing items at constant intervals. Constant intervals do not take into consideration the unique circumstances of a machine being maintained, so although general purpose schedules are convenient from the viewpoint of ordering spares, they risk wasting money by replacing parts that are still operational.

Predictive maintenance, on the other hand, aims to get the most life out of equipment while minimising the risk of failure. Increasingly, it involves gathering large quantities of data. While some of this will be existing data, such as maintenance or warranty records, adding data sources such as sensors on the equipment will also be important to build the big picture.

One of the biggest challenges is gathering and interpreting unstructured data, such as free text in maintenance records, design specs, test data from failed equipment, or even comments on social media or Google searches. The most intelligent data analytical automation software will also provide graphical visualisation of production data and generate customised statistical reports.

Having collected all the data, the next step involves using data analytics to make sense of the data, and then figuring out predictive rules that will become the basis for a predictive maintenance model. Once the model is built, it must be tested and progressively refined. But a bad model is better than no model, albeit only marginally – and with progressive refinement via a continuous learning loop the model can be updated based on on-going results. For example, if a component fails after being used for a specific product run, pattern recognition can identify the stresses that are unique to that run that could have caused the failure.

Inside AWNC, the Toyota transmission plant in North Carolina, a recent upgrade includes a new MES, inventory management, predictive maintenance and quality systems that transmit all data for collection and analysis over a secure, Cisco-enabled Wi-Fi network.

Video data

According to test and measurement company HBM, video use is accelerating in data collection. Video cameras are already used in many test and measurement applications in addition to data collection with traditional tactile sensors.

“There is no longer any question that recording video data in parallel to tactile sensors or digital bus signals is becoming more and more attractive to users,” says Christof Salcher, Product Manager Instrumentation at HBM. “Video supports traditional sensor data and is becoming a valuable source of additional information.”

Be the first to have your say.

You need to or  to add comments.


Andy Pye is Consulting Editor of Controls, Drives and Automation. He also owns the online publishing business Carousel Web, which publishes in the security, health, defence and advanced materials sectors.

In a publishing career spanning back to 1980, Andy has edited many of the leading UK manufacturing and engineering titles, including Design Engineering, Engineering and Industrial Technology. In 1999, he was a Founding Partner and Shareholder of Pro-Talk, the ground-breaking online publications company which was sold to Centaur Media in 2006.

Prior to a career in publishing, Andy graduated in Natural Sciences, specialising in Metallurgy and Materials Science, and worked for a materials engineering consultancy. Outside publishing, Andy consults on the business management of recreational sports clubs and has worked for the Kent Cricket Board and England and Wales Cricket Board. Approaching 60, he still plays and coaches cricket!